The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000658 Strehl's sequence "C_n^(3)". 3
 1, 4, 68, 1732, 51076, 1657904, 57793316, 2117525792, 80483121028, 3147565679824, 125937573689968, 5133632426499152, 212530848994367524, 8914634034287235856, 378138515326996979168, 16196097181014298854032 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES Volker Strehl, Binomial identities - combinatorial and algorithmic aspects. Trends in discrete mathematics. Discrete Math. 136 (1994), no. 1-3, 309-346. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..100 Vaclav Kotesovec, Recurrence (of order 6) FORMULA Sum binomial(n, k)^2 * binomial(2k, k)^2 * binomial(2k, n-k); k=0..n. a(n) ~ 7^(2*n+5/2) / (20 * sqrt(15) * Pi^2 * n^2). - Vaclav Kotesovec, Mar 09 2014 MAPLE A000658:=n->add(binomial(n, k)^2*binomial(2*k, k)^2*binomial(2*k, n-k), k=0..n): seq(A000658(n), n=0..15); # Wesley Ivan Hurt, Sep 19 2014 MATHEMATICA Table[Sum[Binomial[n, k]^2 Binomial[2k, k]^2 Binomial[2k, n-k], {k, 0, n}], {n, 0, 25}] (* Harvey P. Dale, Oct 19 2011 *) PROG (PARI) a(n)=sum(k=1, n, binomial(n, k)^2 * binomial(2k, k)^2 * binomial(2k, n-k)) \\ Charles R Greathouse IV, Sep 19 2014 (Haskell) a000658 n = sum \$ map c3 [0..n] where c3 k = (a007318' n k)^2 * (a007318' (2*k) k)^2 * a007318' (2*k) (n-k) -- Reinhard Zumkeller, May 20 2015 CROSSREFS Third row of array A094424. Cf. A007318. Sequence in context: A141032 A156084 A362730 * A351027 A156470 A326288 Adjacent sequences: A000655 A000656 A000657 * A000659 A000660 A000661 KEYWORD nonn,easy,nice AUTHOR Don Knuth STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)