login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302896
Number of permutations of [n] having exactly three alternating descents.
2
5, 26, 182, 1196, 8699, 67054, 556952, 4945368, 46901985, 473324450, 5068610666, 57423496708, 686431008183, 8636011443670, 114084907758220, 1579087434474288, 22855092931547133, 345270138380243850, 5434925832561946750, 89001957427837012060
OFFSET
4,1
COMMENTS
Index i is an alternating descent of permutation p if either i is odd and p(i) > p(i+1), or i is even and p(i) < p(i+1).
LINKS
D. Chebikin, Variations on descents and inversions in permutations, The Electronic J. of Combinatorics, 15 (2008), #R132.
FORMULA
a(n) ~ (4 - Pi)^3 * 2^(n + 5/2) * n^(n + 7/2) / (3! * Pi^(n + 7/2) * exp(n)). - Vaclav Kotesovec, Apr 29 2018
E.g.f.: (6*cos(x)^2 + (3*x^2 - 12*x + 6*sin(x) + 6)*cos(x) + (x^3 - 6*x^2 + 18*x - 12)*sin(x) + 2*x^3 - 12*x^2 + 18*x - 12)/(6*cos(x)^2 + 12*sin(x) - 12). - Vaclav Kotesovec, Apr 30 2018
EXAMPLE
a(4) = 5: 2143, 3142, 3241, 4132, 4231.
a(5) = 26: 12435, 12534, 13425, 13524, 14523, 21345, 21543, 23415, 23514, 24513, 31245, 31542, 32541, 34512, 41235, 41532, 42531, 43215, 43521, 51234, 51432, 52431, 53214, 53421, 54213, 54312.
MAPLE
b:= proc(u, o) option remember; series(`if`(u+o=0, 1,
add(b(o+j-1, u-j)*x, j=1..u)+
add(b(o-j, u-1+j), j=1..o)), x, 5)
end:
a:= n-> coeff(b(n, 0), x, 4):
seq(a(n), n=4..30);
MATHEMATICA
nmax = 25; Drop[CoefficientList[Series[(6*Cos[x]^2 + (3*x^2 - 12*x + 6*Sin[x] + 6)*Cos[x] + (x^3 - 6*x^2 + 18*x - 12)*Sin[x] + 2*x^3 - 12*x^2 + 18*x - 12)/(6*Cos[x]^2 + 12*Sin[x] - 12), {x, 0, nmax}], x] * Range[0, nmax]!, 4] (* Vaclav Kotesovec, Apr 30 2018 *)
CROSSREFS
Column k=4 of A145876.
Sequence in context: A094422 A346545 A179513 * A368176 A175151 A121750
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 15 2018
STATUS
approved