|
|
A175151
|
|
a(n) = Sum_{i=1..n} ((i+1)^i - 1)/i.
|
|
1
|
|
|
1, 5, 26, 182, 1737, 21345, 320938, 5701778, 116812889, 2710555349, 70256770866, 2011763864406, 63066746422417, 2148275748236033, 79009709388692498, 3120334201617871778, 131703367127423550129, 5916556161455825857509, 281857608793034773225930
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{j=1..n} (j+1)^j/j - H(n), where H(n) is the n-th harmonic number. - G. C. Greubel, Aug 16 2022
|
|
MATHEMATICA
|
Accumulate[Table[((i+1)^i-1)/i, {i, 20}]] (* Harvey P. Dale, Jul 08 2017 *)
|
|
PROG
|
(Magma) [(&+[((j+1)^j -1)/j: j in [1..n]]): n in [1..30]]; // G. C. Greubel, Aug 16 2022
(SageMath) [sum((j+1)^j -1)/j for j in (1..n)) for n in (1..30)] # G. C. Greubel, Aug 16 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|