login
A175150
a(1)=0. If d(n)>d(n-1), then a(n)=a(n-1)+1. If d(n)<d(n-1), then a(n)=a(n-1)-1. If d(n)=d(n-1), then a(n)=a(n-1). (d(n) is the number of divisors of n.)
2
0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 2, 3, 2, 2, 1, 2, 1, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 3, 4, 3, 4, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 1, 2, 1, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5, 5, 4, 5, 4, 5, 4, 3, 2, 3, 2, 2, 2, 3
OFFSET
1,4
COMMENTS
For n >=2, a(n) = (the number of k <= n where d(k) > d(k-1)) - (the number of k <= n where d(k) < d(k-1)).
The record values of {a(n)} occur at n= 1, 2, 4, 16, 40, 75, 165, 208,...
This sequence goes negative at n = 647. In the plot of the first 10^6 terms, the graph is mostly negative after about 250000. - T. D. Noe, Apr 27 2012
MATHEMATICA
Join[{0}, Accumulate[Sign[Differences[DivisorSigma[0, Range[100]]]]]] (* T. D. Noe, Apr 27 2012 *)
CROSSREFS
Cf. A000005, A182394 (first differences).
Sequence in context: A161278 A160982 A334541 * A161236 A161060 A161264
KEYWORD
sign
AUTHOR
Leroy Quet, Feb 24 2010
EXTENSIONS
Extended by Ray Chandler, Mar 03 2010
Comment typo corrected by Leroy Quet, Mar 07 2010
STATUS
approved