login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365584
Expansion of e.g.f. 1 / (1 + 4 * log(1-x))^(3/4).
1
1, 3, 24, 300, 5100, 109692, 2854344, 87164088, 3055516800, 120916282368, 5331444120576, 259168711406976, 13769882994784896, 793844510730348672, 49353915922852214016, 3291455140392403401984, 234388011123877880424960, 17750517946502792294592000
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (4*j+3)) * |Stirling1(n,k)|.
a(0) = 1; a(n) = Sum_{k=1..n} (4 - k/n) * (k-1)! * binomial(n,k) * a(n-k).
a(n) ~ Gamma(1/4) * n^(n + 1/4) / (2^(3/2) * sqrt(Pi) * (exp(1/4) - 1)^(n + 3/4) * exp(3*n/4)). - Vaclav Kotesovec, Nov 11 2023
MATHEMATICA
a[n_] := Sum[Product[4*j + 3, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 10 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 4*j+3)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 10 2023
STATUS
approved