login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145662
a(n) = numerator of polynomial of genus 1 and level n for m = 5 = A[1,n](5).
4
0, 5, 55, 835, 8365, 41837, 209195, 7321885, 73218955, 1098284605, 5491423277, 302028282755, 1510141416085, 98159192073245, 490795960391965, 2453979801983849, 24539798019883535, 2085882831690821195
OFFSET
1,2
COMMENTS
For numerator of polynomial of genus 1 and level n for m = 1 see A001008
Definition: The polynomial A[1,2n+1](m) = A[genus 1,level n] is here defined as
Sum_{d=1..n-1} m^(n-d)/d.
Few first A[1,n](m):
n=1: A[1,1](m)= 0;
n=2: A[1,2](m)= m;
n=3: A[1,3](m)= m/2 + m^2;
n=4: A[1,4](m)= m/4 + m^2/3 + m^3/2 + m^4.
General formula which uses these polynomials is:
(1/(n+1))Hypergeometric2F1[1,n,n+1,1/m] = Sum_{x>=0} m^(-x)/(x+n) = m^n*arctanh((2m-1)/(2m^2-2m+1)) - A[1,n](m) = m^n*log(m/(m-1)) - A[1,n](m).
The sequence of denominators is ?, 1, 2, 6, 12, 12, 12, 84, ... - Matthew J. Samuel, Jan 30 2011
MAPLE
A145662 := proc(n) add( 5^(n-d)/d, d=1..n-1) ; numer(%) ; end proc: # R. J. Mathar, Feb 01 2011
MATHEMATICA
m = 5; aa = {}; Do[k = 0; Do[k = k + m^(r - d)/d, {d, 1, r - 1}]; AppendTo[aa, Numerator[k]], {r, 1, 30}]; aa
KEYWORD
frac,nonn
AUTHOR
Artur Jasinski, Oct 16 2008
STATUS
approved