login
A144161
Triangle read by rows: T(n,k) = number of simple graphs on n labeled nodes with k edges that are node-disjoint unions of undirected cycle subgraphs.
4
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 4, 3, 1, 0, 0, 10, 15, 12, 1, 0, 0, 20, 45, 72, 70, 1, 0, 0, 35, 105, 252, 490, 465, 1, 0, 0, 56, 210, 672, 1960, 3720, 3507, 1, 0, 0, 84, 378, 1512, 5880, 16740, 31563, 30016, 1, 0, 0, 120, 630, 3024, 14700, 55800, 157815, 300160, 286884
OFFSET
0,14
LINKS
FORMULA
T(n,0) = 1, T(n,k) = 0 if k<0 or n<k, else T(n,k) = T(n-1,k) + 1/2 * Sum_{j=2..k} T(n-1-j,k-j-1) * Product_{i=1..j} (n-i).
EXAMPLE
T(4,3) = 4, because there are 4 simple graphs with 3 edges that are node-disjoint unions of undirected cycle subgraphs:
.1.2. .1.2. .1-2. .1-2.
../|. .|\.. ..\|. .|/..
.3-4. .3-4. .3.4. .3.4.
T(6,6) = C(6,3)/2+5!/2 = 70.
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 0, 0, 1;
1, 0, 0, 4, 3;
1, 0, 0, 10, 15, 12;
1, 0, 0, 20, 45, 72, 70;
...
MAPLE
T:= proc(n, k) option remember; local i, j; if k=0 then 1 elif k<0 or n<k then 0 else T(n-1, k) +add(mul(n-i, i=1..j) *T(n-1-j, k-j-1), j=2..k)/2 fi end: seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
T[n_, k_] := T[n, k] = Module[{i, j}, If[k == 0, 1, If[k < 0 || n < k, 0, T[n - 1, k] + Sum[Product[n - i, {i, 1, j}]*T[n - 1 - j, k - j - 1], {j, 2, k}]/2 ]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
PROG
(Python)
from sympy.core.cache import cacheit
from operator import mul
from functools import reduce
@cacheit
def T(n, k): return 1 if k==0 else 0 if k<0 or n<k else T(n - 1, k) + sum([reduce(mul, [n - i for i in range(1, j + 1)])*T(n - 1 - j, k - j - 1) for j in range(2, k + 1)])//2
for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Aug 07 2017
CROSSREFS
Columns k=0, 1+2, 3-4 give: A000012, A000004, A000292, A050534.
Main diagonal gives A001205.
Row sums give: A108246.
Sequence in context: A010102 A326477 A285650 * A054669 A131027 A133475
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 12 2008
STATUS
approved