The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131027 Period 6: repeat [4, 3, 1, 0, 1, 3]. 12
4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Third column of triangular array T defined in A131022.
a(n) = abs(A078070(n+1)).
Determinants of the spiral knots S(3,k,(1,1)). a(k+4) = det(S(3,k,(1,1))). These knots are also the torus knots T(3,k). - Ryan Stees, Dec 13 2014
LINKS
A. Breiland, L. Oesper, and L. Taalman, p-Coloring classes of torus knots, Online Missouri J. Math. Sci., 21 (2009), 120-126.
N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, Spiral knots, Missouri J. of Math. Sci., 22 (2010).
M. DeLong, M. Russell, and J. Schrock, Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m), Involve, Vol. 8 (2015), No. 3, 361-384.
Seong Ju Kim, R. Stees, and L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.
FORMULA
a(1) = 4, a(2) = a(6) = 3, a(3) = a(5) = 1, a(4) = 0, a(6) = 1; for n > 6, a(n) = a(n-6).
G.f.: (4-5*x+3*x^2)/((1-x)*(1-x+x^2)).
a(n) = 2+cos(n*Pi/3)+sqrt(3)*sin(n*Pi/3) = 2+(-1)^((n-1)/3)+(-1)^((1-n)/3). - Wesley Ivan Hurt, Sep 11 2014
a(k+4) = det(S(3,k,(1,1))) = (b(k+4))^2, where b(5)=1, b(6)=sqrt(3), b(k)=sqrt(3)*b(k-1) - b(k-2) = b(6)*b(k-1) - b(k-2). - Ryan Stees, Dec 13 2014
a(n) = 2 + 2*cos(Pi/3*(n-1)) = 2 + A087204(n-1) for n >= 1. - Werner Schulte, Jul 18 2017 and Peter Munn, Apr 28 2022
EXAMPLE
For k=3, b(7)=sqrt(3)b(6)-b(5)=3-1=2, so det(S(3,3,(1,1)))=2^2=4.
MAPLE
A131027:=n->2+cos(n*Pi/3)+sqrt(3)*sin(n*Pi/3): seq(A131027(n), n=1..100); # Wesley Ivan Hurt, Sep 11 2014
MATHEMATICA
Table[2 + Cos[n*Pi/3] + Sqrt[3]*Sin[n*Pi/3], {n, 30}] (* Wesley Ivan Hurt, Sep 11 2014 *)
PROG
(PARI) {m=105; for(n=1, m, r=(n-1)%6; print1(if(r==0, 4, if(r==1||r==5, 3, if(r==3, 0, 1))), ", "))}
(Magma) m:=105; [ [4, 3, 1, 0, 1, 3][(n-1) mod 6 + 1]: n in [1..m] ];
(Sage) [(lucas_number2(n, 2, 1)-lucas_number2(n-1, 1, 1)) for n in range(4, 109)] # Zerinvary Lajos, Nov 10 2009
CROSSREFS
Cf. A087204, A131022, A078070. Other columns of T are in A088911, A131026, A131028, A131029, A131030.
Sequence in context: A285650 A144161 A054669 * A133475 A242106 A294885
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 10 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 15:57 EDT 2024. Contains 373463 sequences. (Running on oeis4.)