login
A059769
Frobenius number of the subsemigroup of the natural numbers generated by successive pairs of Fibonacci numbers.
13
1, 7, 27, 83, 239, 659, 1781, 4751, 12583, 33175, 87231, 228983, 600473, 1573655, 4122467, 10796939, 28273519, 74031979, 193835949, 507497759, 1328692751, 3478637807, 9107313407, 23843452463, 62423286769, 163426800679, 427857750891, 1120147480451
OFFSET
3,2
LINKS
R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
FORMULA
a(n) = (F(n)-1)*(F(n+1)-1)-1 where F(n) is the n-th Fibonacci number.
G.f.: x^3*(1+4*x+5*x^2-x^4)/((1+x)*(1-3*x+x^2)*(1-x-x^2)). [Colin Barker, Feb 17 2012]
a(n) = F(n)*F(n+1) - F(n+2). - Clark Kimberling, Mar 05 2016
EXAMPLE
a(3)=1 because the 3rd and 4th Fibonacci numbers are 2 and 3, so a(3)=(2-1)(3-1)-1=1. Or, a(3)=1 because 1 is the largest positive integer that is not a nonnegative linear combination of 2 and 3.
MATHEMATICA
Table[(Fibonacci[n]-1)(Fibonacci[n+1]-1)-1, {n, 3, 28}] (* T. D. Noe, Nov 27 2006 *)
f[n_]:=Fibonacci[n]; Table[f[n+1]f[n+2]-f[n+3], {n, 2, 40}] (* Clark Kimberling, Mar 05 2016 *)
PROG
(PARI) x='x+O('x^100); Vec(x^3*(1+4*x+5*x^2-x^4)/(1+x)/(1-3*x+x^2)/(1-x-x^2)) \\ Altug Alkan, Mar 05 2016
(Magma) [Fibonacci(n+1)*Fibonacci(n+2)-Fibonacci(n+3): n in [2..30]]; // Vincenzo Librandi, Mar 06 2016
CROSSREFS
Cf. A000045.
Sequence in context: A038092 A059823 A339771 * A135914 A213588 A305653
KEYWORD
nonn,easy
AUTHOR
Victoria A Sapko (vsapko(AT)math.unl.edu), Feb 21 2001
EXTENSIONS
Corrected by T. D. Noe, Nov 27 2006
STATUS
approved