OFFSET
3,2
LINKS
R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
FORMULA
a(n) = (F(n)-1)*(F(n+1)-1)-1 where F(n) is the n-th Fibonacci number.
G.f.: x^3*(1+4*x+5*x^2-x^4)/((1+x)*(1-3*x+x^2)*(1-x-x^2)). [Colin Barker, Feb 17 2012]
a(n) = F(n)*F(n+1) - F(n+2). - Clark Kimberling, Mar 05 2016
EXAMPLE
a(3)=1 because the 3rd and 4th Fibonacci numbers are 2 and 3, so a(3)=(2-1)(3-1)-1=1. Or, a(3)=1 because 1 is the largest positive integer that is not a nonnegative linear combination of 2 and 3.
MATHEMATICA
Table[(Fibonacci[n]-1)(Fibonacci[n+1]-1)-1, {n, 3, 28}] (* T. D. Noe, Nov 27 2006 *)
f[n_]:=Fibonacci[n]; Table[f[n+1]f[n+2]-f[n+3], {n, 2, 40}] (* Clark Kimberling, Mar 05 2016 *)
PROG
(PARI) x='x+O('x^100); Vec(x^3*(1+4*x+5*x^2-x^4)/(1+x)/(1-3*x+x^2)/(1-x-x^2)) \\ Altug Alkan, Mar 05 2016
(Magma) [Fibonacci(n+1)*Fibonacci(n+2)-Fibonacci(n+3): n in [2..30]]; // Vincenzo Librandi, Mar 06 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Victoria A Sapko (vsapko(AT)math.unl.edu), Feb 21 2001
EXTENSIONS
Corrected by T. D. Noe, Nov 27 2006
STATUS
approved