login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059767
Initial (unsafe) primes of Cunningham chains of first type with length exactly 7.
2
1122659, 2164229, 2329469, 10257809, 10309889, 12314699, 14030309, 14145539, 23103659, 24176129, 28843649, 37088729, 42389519, 49160099, 50785439, 62800169, 68718059, 88174049, 95831189, 105388169, 121255889, 138140729, 155439419, 159938459, 173285999
OFFSET
1,1
COMMENTS
Special primes from A059453.
Primes p such that (2^k)*p+(2^k)-1 is also prime for k = 0, 1, 2, 3, 4, 5, 6 and is composite for k = -1 and k = 7.
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 178 (Rev. ed. 1997).
LINKS
EXAMPLE
C7 prime chain is generated from prime a(10) = 24176129 with 2p+1 iterations: 24176129, 48352259, 96704519, 193409039, 386818079, 773636159, 1547272319, 3094544639.
MATHEMATICA
Transpose[Select[{#, Length[NestWhileList[2#+1&, #, PrimeQ]]-1}&/@ Prime[Range[PrimePi[24177000]]], #[[2]]>6&]][[1]]
Select[Prime[Range[10^6]], PrimeQ[a1=2*#+1]&&PrimeQ[a2=2*a1+1]&&PrimeQ[a3=2*a2+1]&&PrimeQ[a4=2*a3+1]&&PrimeQ[a5=2*a4+1]&&PrimeQ[a6=2*a5+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
PROG
(PARI) is(n)=n%30==29 && isprime(n) && isprime(2*n+1) && isprime(4*n+3) && isprime(8*n+7) && isprime(16*n+15) && isprime(32*n+31) && isprime(64*n+63) && !isprime(n\2) && !isprime(128*n+127) \\ Charles R Greathouse IV, Dec 01 2016
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 21 2001
EXTENSIONS
Corrected and extended by Harvey P. Dale, Jul 10 2002
More terms from Vladimir Joseph Stephan Orlovsky, Jan 17 2009
Corrected by John Cerkan, Nov 30 2016
STATUS
approved