login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213763
Principal diagonal of the convolution array A213762.
3
1, 11, 43, 127, 331, 807, 1891, 4319, 9691, 21463, 47059, 102351, 221131, 475079, 1015747, 2162623, 4587451, 9699255, 20447155, 42991535, 90177451, 188743591, 394264483, 822083487, 1711275931, 3556769687, 7381974931
OFFSET
1,2
COMMENTS
Create a triangle with first column T(n,1)=1+4*n for n=0,1,2... The remaining terms T(r,c)=T(r,c-1)+T(r-1,c-1). The sum of the terms in row(n)=a(n+1). - J. M. Bergot, Dec 18 2012
FORMULA
a(n) = -1 + 2^n - 4*n + n*2^(n+1).
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
G.f.: x*(1 + 5*x - 10*x^2)/(1 - 3*x + 2*x^2 )^2.
MATHEMATICA
(See A213762.)
LinearRecurrence[{6, -13, 12, -4}, {1, 11, 43, 127}, 30] (* Harvey P. Dale, Apr 13 2017 *)
CROSSREFS
Sequence in context: A142039 A196153 A373060 * A302226 A201714 A269422
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 20 2012
STATUS
approved