Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Feb 17 2024 14:30:46
%S 1,11,43,127,331,807,1891,4319,9691,21463,47059,102351,221131,475079,
%T 1015747,2162623,4587451,9699255,20447155,42991535,90177451,188743591,
%U 394264483,822083487,1711275931,3556769687,7381974931
%N Principal diagonal of the convolution array A213762.
%C Create a triangle with first column T(n,1)=1+4*n for n=0,1,2... The remaining terms T(r,c)=T(r,c-1)+T(r-1,c-1). The sum of the terms in row(n)=a(n+1). - _J. M. Bergot_, Dec 18 2012
%H Clark Kimberling, <a href="/A213763/b213763.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-13,12,-4).
%F a(n) = -1 + 2^n - 4*n + n*2^(n+1).
%F a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
%F G.f.: x*(1 + 5*x - 10*x^2)/(1 - 3*x + 2*x^2 )^2.
%t (See A213762.)
%t LinearRecurrence[{6,-13,12,-4},{1,11,43,127},30] (* _Harvey P. Dale_, Apr 13 2017 *)
%Y Cf. A213762, A213500.
%K nonn,easy
%O 1,2
%A _Clark Kimberling_, Jun 20 2012