login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269422 Primes 8k + 3 at the end of the maximal gaps in A269420. 2
11, 43, 211, 419, 739, 1259, 1427, 4931, 15619, 22483, 43283, 83843, 273643, 373859, 1543811, 5364683, 5769403, 20942083, 137650523, 251523163, 369353099, 426009691, 938379811, 1042909163, 1378015843, 1878781763, 11474651731, 12402607739, 15931940483, 51025311059, 144309633179 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Subsequence of A007520.

A269420 lists the corresponding record gap sizes. See more comments there.

LINKS

Table of n, a(n) for n=1..31.

Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.

EXAMPLE

The first two primes of the form 8k + 3 are 3 and 11, so a(1)=11. The next prime of this form is 19; the gap 19-11 is not a record so nothing is added to the sequence. The next prime of this form is 43 and the gap 43-19=24 is a new record, so a(2)=43.

PROG

(PARI) re=0; s=3; forprime(p=11, 1e8, if(p%8!=3, next); g=p-s; if(g>re, re=g; print1(p", ")); s=p)

CROSSREFS

Cf. A007520, A269420, A269421.

Sequence in context: A213763 A302226 A201714 * A259798 A239266 A259963

Adjacent sequences: A269419 A269420 A269421 * A269423 A269424 A269425

KEYWORD

nonn

AUTHOR

Alexei Kourbatov, Feb 25 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 23:19 EDT 2023. Contains 361596 sequences. (Running on oeis4.)