|
|
A269422
|
|
Primes 8k + 3 at the end of the maximal gaps in A269420.
|
|
2
|
|
|
11, 43, 211, 419, 739, 1259, 1427, 4931, 15619, 22483, 43283, 83843, 273643, 373859, 1543811, 5364683, 5769403, 20942083, 137650523, 251523163, 369353099, 426009691, 938379811, 1042909163, 1378015843, 1878781763, 11474651731, 12402607739, 15931940483, 51025311059, 144309633179
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Subsequence of A007520.
A269420 lists the corresponding record gap sizes. See more comments there.
|
|
LINKS
|
Table of n, a(n) for n=1..31.
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
|
|
EXAMPLE
|
The first two primes of the form 8k + 3 are 3 and 11, so a(1)=11. The next prime of this form is 19; the gap 19-11 is not a record so nothing is added to the sequence. The next prime of this form is 43 and the gap 43-19=24 is a new record, so a(2)=43.
|
|
PROG
|
(PARI) re=0; s=3; forprime(p=11, 1e8, if(p%8!=3, next); g=p-s; if(g>re, re=g; print1(p", ")); s=p)
|
|
CROSSREFS
|
Cf. A007520, A269420, A269421.
Sequence in context: A213763 A302226 A201714 * A259798 A239266 A259963
Adjacent sequences: A269419 A269420 A269421 * A269423 A269424 A269425
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alexei Kourbatov, Feb 25 2016
|
|
STATUS
|
approved
|
|
|
|