login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A269424
Record (maximal) gaps between primes of the form 8k + 1.
2
24, 32, 56, 64, 88, 112, 120, 136, 160, 216, 232, 240, 264, 304, 384, 480, 488, 528, 544, 576, 624, 640, 720, 760, 816, 888, 960, 1032, 1064, 1200, 1296, 1320, 1432, 1464, 1520, 1560, 1608, 1832, 1848
OFFSET
1,1
COMMENTS
Dirichlet's theorem on arithmetic progressions suggests that average gaps between primes of the form 8k + 1 below x are about phi(8)*log(x). This sequence shows that the record gap ending at p grows almost as fast as phi(8)*log^2(p). Here phi(n) is A000010, Euler's totient function; phi(8)=4.
Conjecture: a(n) < phi(8)*log^2(A269426(n)) almost always.
A269425 lists the primes preceding the maximal gaps.
A269426 lists the corresponding primes at the end of the maximal gaps.
LINKS
Alexei Kourbatov, On the distribution of maximal gaps between primes in residue classes, arXiv:1610.03340 [math.NT], 2016.
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
EXAMPLE
The first two primes of the form 8k + 1 are 17 and 41, so a(1)=41-17=24. The next prime of this form is 73 and the gap 73-41=32 is a new record, so a(2)=32.
MATHEMATICA
re = 0; s = 17; Reap[For[p = 41, p < 10^8, p = NextPrime[p], If[Mod[p, 8] == 1, g = p - s; If[g > re, re = g; Print[g]; Sow[g]]; s = p]]][[2, 1]] (* Jean-François Alcover, Oct 17 2016, adapted from PARI *)
PROG
(PARI) re=0; s=17; forprime(p=41, 1e8, if(p%8!=1, next); g=p-s; if(g>re, re=g; print1(g", ")); s=p)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexei Kourbatov, Feb 25 2016
STATUS
approved