login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240068
Number of prime Lipschitz quaternions having norm prime(n).
1
24, 32, 48, 64, 96, 112, 144, 160, 192, 240, 256, 304, 336, 352, 384, 432, 480, 496, 544, 576, 592, 640, 672, 720, 784, 816, 832, 864, 880, 912, 1024, 1056, 1104, 1120, 1200, 1216, 1264, 1312, 1344, 1392, 1440, 1456, 1536, 1552, 1584, 1600, 1696, 1792
OFFSET
1,1
COMMENTS
This sequence counts all prime Lipschitz quaternions having a given norm; A239394 counts only the prime nonnegative Lipschitz quaternions.
FORMULA
a(n) = 8 * (prime(n) + 1) = 8 * A008864(n).
MATHEMATICA
(* first << Quaternions` *)
mx = 17; lst = Flatten[Table[{a, b, c, d}, {a, -mx, mx}, {b, -mx, mx}, {c, -mx, mx}, {d, -mx, mx}], 3]; q = Select[lst, Norm[Quaternion @@ #] < mx^2 && PrimeQ[Quaternion @@ #, Quaternions -> True] &]; q2 = Sort[q, Norm[#1] < Norm[#2] &]; Take[Transpose[Tally[(Norm /@ q2)^2]][[2]], mx]
CROSSREFS
Cf. A239393 (prime Lipschitz quaternions), A239394.
Cf. A055669 (number of prime Hurwitz quaternions of norm prime(n)).
Sequence in context: A102374 A364353 A317534 * A269424 A319928 A025102
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 01 2014
STATUS
approved