|
|
A239394
|
|
Number of prime nonnegative Lipschitz quaternions having norm prime(n).
|
|
3
|
|
|
6, 4, 12, 4, 12, 16, 24, 16, 12, 36, 16, 28, 48, 28, 24, 48, 48, 52, 40, 36, 52, 40, 60, 84, 64, 96, 52, 72, 76, 84, 64, 96, 96, 88, 120, 76, 100, 88, 84, 132, 120, 124, 96, 112, 132, 100, 124, 112, 144, 148, 156, 120, 160, 168, 180, 132, 204, 136, 160, 204
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For n > 1, there are prime(n) + 1 more nonnegative Hurwitz quaternions than nonnegative Lipschitz quaternions. - T. D. Noe, Mar 31 2014
|
|
LINKS
|
Table of n, a(n) for n=1..60.
Wikipedia, Hurwitz quaternion
|
|
EXAMPLE
|
The six prime nonnegative Lipschitz quaternions having norm 2 are 1+i, 1+j, 1+k, i+j, i+k, and j+k.
|
|
MATHEMATICA
|
(* first << Quaternions` *) mx = 17; lst = Flatten[Table[{a, b, c, d}, {a, 0, mx}, {b, 0, mx}, {c, 0, mx}, {d, 0, mx}], 3]; q = Select[lst, Norm[Quaternion @@ #] < mx^2 && PrimeQ[Quaternion @@ #, Quaternions -> True] &]; q2 = Sort[q, Norm[#1] < Norm[#2] &]; Transpose[Tally[(Norm /@ q2)^2]][[2]]
|
|
CROSSREFS
|
Cf. A239393 (prime Lipschitz quaternions).
Cf. A239395 (prime Hurwitz quaternions).
Sequence in context: A357128 A141270 A040032 * A006582 A263586 A180497
Adjacent sequences: A239391 A239392 A239393 * A239395 A239396 A239397
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
T. D. Noe, Mar 21 2014
|
|
STATUS
|
approved
|
|
|
|