OFFSET
1,1
COMMENTS
For n > 1, there are prime(n) + 1 more nonnegative Hurwitz quaternions than nonnegative Lipschitz quaternions. - T. D. Noe, Mar 31 2014
LINKS
Wikipedia, Hurwitz quaternion
EXAMPLE
The six prime nonnegative Hurwitz quaternions having norm 2 are 1+i, 1+j, 1+k, i+j, i+k, and j+k.
MATHEMATICA
(* first << Quaternions` *) mx = 17; lst = Flatten[Table[{a, b, c, d}/2, {a, 0, mx}, {b, 0, mx}, {c, 0, mx}, {d, 0, mx}], 3]; q = Select[lst, Norm[Quaternion @@ #] < mx^2 && PrimeQ[Quaternion @@ #, Quaternions -> True] &]; q2 = Sort[q, Norm[#1] < Norm[#2] &]; Take[Transpose[Tally[(Norm /@ q2)^2]][[2]], mx]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 21 2014
STATUS
approved