login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240065
Number of partitions of n such that m(2) > m(3), where m = multiplicity.
3
0, 0, 1, 1, 2, 2, 4, 6, 9, 12, 17, 23, 33, 43, 59, 76, 102, 132, 173, 221, 285, 361, 462, 580, 733, 913, 1144, 1418, 1761, 2168, 2673, 3273, 4012, 4885, 5952, 7212, 8741, 10546, 12719, 15279, 18344, 21949, 26247, 31287, 37268, 44267, 52541, 62207, 73584
OFFSET
0,5
FORMULA
a(n) + A240063(n) + A240064(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 4 partitions: 42, 222, 2211, 21111.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 2] < Count[p, 3]], {n, 0, z}] (* A240063 *)
t2 = Table[Count[f[n], p_ /; Count[p, 2] <= Count[p, 3]], {n, 0, z}] (* A240063(n+3) *)
t3 = Table[Count[f[n], p_ /; Count[p, 2] == Count[p, 3]], {n, 0, z}] (* A240064 *)
t4 = Table[Count[f[n], p_ /; Count[p, 2] > Count[p, 3]], {n, 0, z}] (* A240065 *)
t5 = Table[Count[f[n], p_ /; Count[p, 2] >= Count[p, 3]], {n, 0, z}] (* A240065(n+2) *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 31 2014
STATUS
approved