The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240064 Number of partitions of n such that m(2) = m(3), where m = multiplicity. 3
 1, 1, 1, 1, 2, 4, 5, 6, 8, 11, 16, 20, 26, 33, 43, 56, 71, 89, 112, 140, 177, 219, 271, 333, 411, 505, 617, 750, 912, 1105, 1339, 1612, 1940, 2327, 2789, 3334, 3978, 4733, 5625, 6670, 7903, 9338, 11021, 12980, 15273, 17940, 21043, 24640, 28822, 33661, 39273 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS FORMULA A240063(n) + a(n) + A240065(n) = A000041(n) for n >= 0. EXAMPLE a(6) counts these 5 partitions:  6, 51, 411, 321, 222. MATHEMATICA z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 2] < Count[p, 3]], {n, 0, z}]  (* A240063 *) t2 = Table[Count[f[n], p_ /; Count[p, 2] <= Count[p, 3]], {n, 0, z}] (* A240063(n+3) *) t3 = Table[Count[f[n], p_ /; Count[p, 2] == Count[p, 3]], {n, 0, z}] (* A240064 *) t4 = Table[Count[f[n], p_ /; Count[p, 2] > Count[p, 3]], {n, 0, z}]  (* A240065 *) t5 = Table[Count[f[n], p_ /; Count[p, 2] >= Count[p, 3]], {n, 0, z}] (* A240065(n+2) *) CROSSREFS Cf. A240063, A240065, A182714, A000041. Sequence in context: A353187 A099247 A192583 * A007192 A081354 A119792 Adjacent sequences:  A240061 A240062 A240063 * A240065 A240066 A240067 KEYWORD nonn,easy AUTHOR Clark Kimberling, Mar 31 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 29 05:16 EDT 2022. Contains 354910 sequences. (Running on oeis4.)