

A269426


Primes 8k + 1 at the end of the maximal gaps in A269424.


2



41, 73, 193, 521, 761, 2273, 6073, 8513, 10169, 22697, 37889, 73361, 80153, 221201, 351913, 1879601, 2321881, 4259641, 6395201, 8212553, 9619081, 11282657, 36087833, 59502977, 72496049, 236886401, 556953841, 809098513, 830450161, 888024649, 2420631793, 3845317297, 13243533449, 17279669993, 29704278649, 49624610521, 59974491817, 107046777121, 158191301329
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Subsequence of A007519.
A269424 lists the corresponding record gap sizes. See more comments there.


LINKS

Table of n, a(n) for n=1..39.
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.


EXAMPLE

The first two primes of the form 8k + 1 are 17 and 41, so a(1)=41. The next prime of this form is 73 and the gap 7341=32 is a new record, so a(2)=73.


PROG

(PARI) re=0; s=17; forprime(p=41, 1e8, if(p%8!=1, next); g=ps; if(g>re, re=g; print1(p", ")); s=p)


CROSSREFS

Cf. A007519, A269424, A269425.
Sequence in context: A214643 A142038 A213047 * A224671 A044107 A044488
Adjacent sequences: A269423 A269424 A269425 * A269427 A269428 A269429


KEYWORD

nonn


AUTHOR

Alexei Kourbatov, Feb 25 2016


STATUS

approved



