login
A214643
Primes p such that p XOR 22 = p + 22.
1
41, 73, 97, 137, 193, 233, 257, 353, 449, 457, 521, 577, 617, 641, 673, 769, 809, 929, 937, 1033, 1097, 1129, 1153, 1193, 1217, 1249, 1289, 1321, 1409, 1481, 1601, 1609, 1697, 1801, 1889, 1993, 2017, 2081, 2089, 2113, 2153, 2273, 2281, 2377, 2441, 2473, 2593
OFFSET
1,1
COMMENTS
It seems that all of the terms in A197918 with the exception of the first three terms are also in this sequence.
MATHEMATICA
Select[Range[3000], PrimeQ[#] && BitXor[#, 22] == # + 22 &] (* T. D. Noe, Jul 24 2012 *)
Select[Prime[Range[400]], BitXor[#, 22]==#+22&] (* Harvey P. Dale, Jul 23 2023 *)
PROG
(Magma)
XOR := func<a, b | Seqint([ (adigs[i] + bdigs[i]) mod 2 : i in [1..n]], 2)
where adigs := Intseq(a, 2, n)
where bdigs := Intseq(b, 2, n)
where n := 1 + Ilog2(Max([a, b, 1]))>;
m:=22;
for n in [2 .. 10000] do
if IsPrime(n) then pn:=n;
if (XOR(pn, m) eq pn+m) then pn; end if;
end if;
end for;
CROSSREFS
Cf. A197918.
Sequence in context: A057540 A362592 A105126 * A142038 A213047 A269426
KEYWORD
nonn
AUTHOR
Brad Clardy, Jul 23 2012
STATUS
approved