login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188671
A000145(n) / 8 - (n^5 + 1).
0
1, 0, -24, -32, 108, 275, -176, -1056, 45, 3157, 1080, -6541, -836, 16839, 2072, -33824, 1188, 67100, 1672, -95883, 19162, 161083, -8208, -224653, 2707, 371325, 67500, -520025, -1188, 870551, 8512, -1082400, 148334, 1419889, 10428, -1588228
OFFSET
1,3
COMMENTS
Theorem 2 in the Hales reference defines t_p = (n_p - 8(p^5 + 1)) / (32 p^(5/2)) where n_p is the number of ways to express p as a sum of 12 squares.
LINKS
T. C. Hales, The Mathematical Work of the 2010 Fields Medalists, Notices Amer. Math. Soc, 58 (No. 3, Mar 2011), 453-457. See p. 457, Theorem 2.
FORMULA
G.f.: ((Sum_{k} x^k^2)^12 - 1) / 8 - (2*x + 21*x^2 + 76*x^3 + 16*x^4 + 6*x^5 - x^6) / (1 - x)^6.
a(n) = A000145(n) / 8 - (n^5 + 1).
EXAMPLE
x - 24*x^3 - 32*x^4 + 108*x^5 + 275*x^6 - 176*x^7 - 1056*x^8 + 45*x^9 + ...
PROG
(PARI) {a(n) = if( n<1, 0, polcoeff( sum( k = 1, sqrtint(n), 2 * x^k^2, 1 + x*O(x^n))^12, n) / 8 - (n^5 + 1))}
CROSSREFS
Cf. A000145.
Sequence in context: A269424 A319928 A025102 * A166648 A231468 A366422
KEYWORD
sign
AUTHOR
Michael Somos, Apr 11 2011
STATUS
approved