login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269419
a(n) is denominator of y(n), where y(n+1) = (25*n^2-1)/48 * y(n) + (1/2)*Sum_{k=1..n}y(k)*y(n+1-k), with y(0) = -1.
9
1, 48, 4608, 55296, 42467328, 84934656, 21743271936, 36691771392, 400771988324352, 1352605460594688, 16620815899787526144, 779100745302540288, 153177439332441840943104, 2393397489569403764736, 235280546814630667688607744, 57441539749665690353664
OFFSET
0,2
LINKS
Edward A. Bender, Zhicheng Gao, L. Bruce Richmond, The map asymptotics constant tg, The Electronic Journal of Combinatorics, Volume 15 (2008), Research Paper #R51.
Stavros Garoufalidis, Thang T.Q. Le, Marcos Marino, Analyticity of the Free Energy of a Closed 3-Manifold, arXiv:0809.2572 [math.GT], 2008.
FORMULA
t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)), where t(g) is the orientable map asymptotics constant and gamma is the Gamma function.
EXAMPLE
For n=0 we have t(0) = (-1) / (2^(-2)*gamma(-1/2)) = 2/sqrt(Pi).
For n=1 we have t(1) = (1/48) / (2^(-1)*gamma(2)) = 1/24.
n y(n) t(n)
0 -1 2/sqrt(Pi)
1 1/48 1/24
2 49/4608 7/(4320*sqrt(Pi))
3 1225/55296 245/15925248
4 4412401/42467328 37079/(96074035200*sqrt(Pi))
5 73560025/84934656 38213/14089640214528
6 245229441961/21743271936 5004682489/(92499927372103680000*sqrt(Pi))
7 7759635184525/36691771392 6334396069/20054053184087387013120
...
MATHEMATICA
y[0] = -1;
y[n_] := y[n] = (25(n-1)^2-1)/48 y[n-1] + 1/2 Sum[y[k] y[n-k], {k, 1, n-1}];
Table[y[n] // Denominator, {n, 0, 15}] (* Jean-François Alcover, Oct 23 2018 *)
PROG
(PARI)
seq(n) = {
my(y = vector(n));
y[1] = 1/48;
for (g = 1, n-1,
y[g+1] = (25*g^2-1)/48 * y[g] + 1/2*sum(k = 1, g, y[k]*y[g+1-k]));
return(concat(-1, y));
}
apply(denominator, seq(14))
CROSSREFS
Cf. A266240, A269418 (numerator).
Sequence in context: A098209 A208793 A174755 * A299422 A321940 A364174
KEYWORD
nonn,frac
AUTHOR
Gheorghe Coserea, Feb 25 2016
STATUS
approved