login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269416
Expansion of 3*(2 - x)/((1 - x)*(1 + x)^2).
1
6, -9, 15, -18, 24, -27, 33, -36, 42, -45, 51, -54, 60, -63, 69, -72, 78, -81, 87, -90, 96, -99, 105, -108, 114, -117, 123, -126, 132, -135, 141, -144, 150, -153, 159, -162, 168, -171, 177, -180, 186, -189, 195, -198, 204, -207, 213, -216, 222, -225, 231, -234, 240
OFFSET
0,1
COMMENTS
Alternating sum of A017233.
FORMULA
G.f.: 3*(2 - x)/((1 - x)*(1 + x)^2).
a(n) = -a(n-1) + a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} (-1)^k*3*(3*k + 2).
a(n) = 3*((-1)^n*6*n + (-1)^n*7 + 1)/4.
Sum_{n>=0} 1/a(n) = log(3)/6 - Pi/(18*sqrt(3)) = 0.082335416765006179088425414... . - Vaclav Kotesovec, Feb 25 2016
a(n) = 3*(-1)^n*A007494(n+1). - R. J. Mathar, Jun 07 2016
EXAMPLE
a(0) = 1 + 2 + 3 = 6;
a(1) = 1 + 2 + 3 - 4 - 5 - 6 = -9;
a(2) = 1 + 2 + 3 - 4 - 5 - 6 + 7 + 8 + 9 = 15;
a(3) = 1 + 2 + 3 - 4 - 5 - 6 + 7 + 8 + 9 - 10 - 11 - 12 = -18;
a(4) = 1 + 2 + 3 - 4 - 5 - 6 + 7 + 8 + 9 - 10 - 11 - 12 + 13 + 14 + 15 = 24, etc.
MATHEMATICA
LinearRecurrence[{-1, 1, 1}, {6, -9, 15}, 53]
Table[3 ((6 (-1)^n n + 7 (-1)^n + 1)/4), {n, 0, 52}]
CROSSREFS
Sequence in context: A316024 A316025 A020648 * A316026 A316027 A316028
KEYWORD
sign,easy
AUTHOR
Ilya Gutkovskiy, Feb 25 2016
STATUS
approved