OFFSET
1,2
COMMENTS
LINKS
Clark Kimberling, Antidiagonals n = 1..40, flattened
FORMULA
T(n,k) = 5*T(n,k-1)-9*T(n,k-2)+7*T(n,k-3)-2*T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(2*n - 1 - (2*n - 3)*x) and g(x) = (1 - 2*x)(1 - x )^3.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....6....21....58....141...318
3....14...43....110...255...558
5....22...65....162...369...798
7....30...87....214...483...1038
9....38...109...266...597...1278
11...46...131...318...711...1518
MATHEMATICA
b[n_] := -1 + 2^n; c[n_] := 2 n - 1;
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213756 *)
Table[t[n, n], {n, 1, 40}] (* A213757 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213758 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Jun 20 2012
STATUS
approved