login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213551
Rectangular array: (row n) = b**c, where b(h) = h*(h+1)/2, c(h) = b(n-1+h), n>=1, h>=1, and ** = convolution.
4
1, 6, 3, 21, 15, 6, 56, 46, 28, 10, 126, 111, 81, 45, 15, 252, 231, 186, 126, 66, 21, 462, 434, 371, 281, 181, 91, 28, 792, 756, 672, 546, 396, 246, 120, 36, 1287, 1242, 1134, 966, 756, 531, 321, 153, 45, 2002, 1947, 1812, 1596, 1316, 1001, 686, 406
OFFSET
1,2
COMMENTS
Principal diagonal: A213552
Antidiagonal sums: A051923
Row 1, (1,3,6,...)**(1,3,6,...): A000389
Row 2, (1,3,6,...)**(3,6,10,...): (k^5 + 15*k^4 + 85*k^3 + 165*k^2 + 94*k)/120
Row 3, (1,3,6,...)**(6,10,15,...): (k^5 + 20*k^4 + 155*k^3 + 340*k^2 + 204*k)/120
For a guide to related arrays, see A213500.
LINKS
FORMULA
T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) - T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = n*(n+1) - 2*((n-1)^2)*x + 2*(n-1)*x^2 and g(x) = 2*(1 - x)^2.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....6....21....56....126....252
3....15...46....111...231....434
6....28...81....186...371....672
10...45...126...281...546....966
15...66...181...396...756....1316
21...91...246...531...1001...1722
MATHEMATICA
b[n_] := n (n + 1)/2; c[n_] := n (n + 1)/2
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213551 *)
d = Table[t[n, n], {n, 1, 40}] (* A213552 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A051923 *)
CROSSREFS
Cf. A213500.
Sequence in context: A281851 A282217 A213756 * A213753 A213747 A286203
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jun 17 2012
STATUS
approved