login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325997
G.f.: Sum_{n>=0} (n+1) * (x + x^n)^n.
4
1, 4, 3, 10, 8, 18, 7, 40, 9, 44, 41, 54, 13, 150, 15, 88, 127, 168, 19, 298, 21, 324, 275, 180, 25, 854, 132, 238, 524, 774, 31, 1286, 33, 1180, 893, 378, 674, 2998, 39, 460, 1406, 3744, 43, 2790, 45, 3458, 4397, 648, 49, 8420, 303, 4714, 2960, 6270, 55, 7060, 6492, 9120, 4049, 990, 61, 30748, 63, 1120, 7697, 13788, 15082, 17626, 69, 16834, 6971, 28788, 73, 48088, 75, 1558, 39792, 25578, 12091, 41578, 81, 77874, 11540, 1890, 85, 121650, 58227
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - p*q^n*r)^(n+k),
for any fixed integer k; here, k = 2 and p = x, q = x, r = 1.
LINKS
FORMULA
G.f.: Sum_{n>=0} (n+1) * (x + x^n)^n.
G.f.: Sum_{n>=0} (n+1) * x^(n^2) / (1 - x^(n+1))^(n+2).
EXAMPLE
G.f.: A(x) = 1 + 4*x + 3*x^2 + 10*x^3 + 8*x^4 + 18*x^5 + 7*x^6 + 40*x^7 + 9*x^8 + 44*x^9 + 41*x^10 + 54*x^11 + 13*x^12 + 150*x^13 + 15*x^14 + 88*x^15 +...
where
A(x) = 1 + 2*(x + x) + 3*(x + x^2)^2 + 4*(x + x^3)^3 + 5*(x + x^4)^4 + 6*(x + x^5)^5 + 7*(x + x^6)^6 + 8*(x + x^7)^7 + 9*(x + x^8)^8 + 10*(x + x^9)^9 + ...
Also
A(x) = 1/(1-x)^2 + 2*x/(1 - x^2)^3 + 3*x^4/(1 - x^3)^4 + 4*x^9/(1 - x^4)^5 + 5*x^16/(1 - x^5)^6 + 6*x^25/(1 - x^6)^7 + 7*x^36/(1 - x^7)^8 + 8*x^49/(1 - x^8)^9 + 9*x^64/(1 - x^9)^10 + 10*x^81/(1 - x^10)^11 + ...
MAPLE
G:= add((n+1)*(x+x^n)^n, n=0..100):
S:= series(G, x, 101):
seq(coeff(S, x, n), n=0..100); # Robert Israel, Jun 02 2019
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (m+1) * (x + x^m +x*O(x^n))^m), n)}
for(n=0, 100, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(sum(m=0, n, (m+1) * x^(m^2) / (1 - x^(m+1) +x*O(x^n))^(m+2)), n)}
for(n=0, 100, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Paul D. Hanna, Jun 02 2019
STATUS
approved