login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167583 A triangle related to the GF(z) formulas of the rows of the ED3 array A167572. 3
1, 1, 5, 3, 14, 23, 15, 81, 73, 167, 105, 660, 414, 804, 1473, 945, 6825, 2850, 7578, 7629, 16413, 10395, 85050, 19425, 99420, 61389, 111882, 211479, 135135, 1237005, 59535, 1642725, 429525, 1461375, 1518525, 3192975, 2027025, 20540520, -2619540 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
The GF(z) formulas given below correspond to the first ten rows of the ED3 array A167572. The polynomials in their numerators lead to the triangle given above.
LINKS
EXAMPLE
Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = (z + 5)/(1-z)^2.
Row 3: GF(z) = (3*z^2 + 14*z + 23)/(1-z)^3.
Row 4: GF(z) = (15*z^3 + 81*z^2 + 73*z + 167)/(1-z)^4.
Row 5: GF(z) = (105*z^4 + 660*z^3 + 414*z^2 + 804*z + 1473)/(1-z)^5.
Row 6: GF(z) = (945*z^5 + 6825*z^4 + 2850*z^3 + 7578*z^2 + 7629*z + 16413)/(1-z)^6.
Row 7: GF(z) = (10395*z^6 + 85050*z^5 + 19425*z^4 + 99420*z^3 + 61389*z^2 + 111882*z + 211479)/(1-z)^7.
Row 8: GF(z) = (135135*z^7 + 1237005*z^6 + 59535*z^5 + 1642725*z^4 + 429525*z^3 + 1461375*z^2 + 1518525*z + 3192975)/(1-z)^8.
Row 9: GF(z) = (2027025*z^8 + 20540520*z^7 - 2619540*z^6 + 32228280*z^5 - 2479050*z^4 + 27797400*z^3 + 15813900*z^2 + 28153800*z + 54010305)/(1-z)^9.
Row 10: GF(z) = (34459425*z^9 + 383107725*z^8 - 115135020*z^7 + 722119860*z^6 - 283607730*z^5 + 703347750*z^4 + 89576100*z^3 + 470110500*z^2 + 495868185*z + 1030249845)/(1-z)^10.
CROSSREFS
A167572 is the ED3 array.
A001147 equals the first left hand column.
A167576 equals the first right hand column.
A014481 equals the row sums.
Sequence in context: A367204 A213750 A213774 * A351951 A329029 A248983
KEYWORD
sign,tabl
AUTHOR
Johannes W. Meijer, Nov 10 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 05:54 EST 2024. Contains 370294 sequences. (Running on oeis4.)