login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167583
A triangle related to the GF(z) formulas of the rows of the ED3 array A167572.
3
1, 1, 5, 3, 14, 23, 15, 81, 73, 167, 105, 660, 414, 804, 1473, 945, 6825, 2850, 7578, 7629, 16413, 10395, 85050, 19425, 99420, 61389, 111882, 211479, 135135, 1237005, 59535, 1642725, 429525, 1461375, 1518525, 3192975, 2027025, 20540520, -2619540
OFFSET
1,3
COMMENTS
The GF(z) formulas given below correspond to the first ten rows of the ED3 array A167572. The polynomials in their numerators lead to the triangle given above.
EXAMPLE
Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = (z + 5)/(1-z)^2.
Row 3: GF(z) = (3*z^2 + 14*z + 23)/(1-z)^3.
Row 4: GF(z) = (15*z^3 + 81*z^2 + 73*z + 167)/(1-z)^4.
Row 5: GF(z) = (105*z^4 + 660*z^3 + 414*z^2 + 804*z + 1473)/(1-z)^5.
Row 6: GF(z) = (945*z^5 + 6825*z^4 + 2850*z^3 + 7578*z^2 + 7629*z + 16413)/(1-z)^6.
Row 7: GF(z) = (10395*z^6 + 85050*z^5 + 19425*z^4 + 99420*z^3 + 61389*z^2 + 111882*z + 211479)/(1-z)^7.
Row 8: GF(z) = (135135*z^7 + 1237005*z^6 + 59535*z^5 + 1642725*z^4 + 429525*z^3 + 1461375*z^2 + 1518525*z + 3192975)/(1-z)^8.
Row 9: GF(z) = (2027025*z^8 + 20540520*z^7 - 2619540*z^6 + 32228280*z^5 - 2479050*z^4 + 27797400*z^3 + 15813900*z^2 + 28153800*z + 54010305)/(1-z)^9.
Row 10: GF(z) = (34459425*z^9 + 383107725*z^8 - 115135020*z^7 + 722119860*z^6 - 283607730*z^5 + 703347750*z^4 + 89576100*z^3 + 470110500*z^2 + 495868185*z + 1030249845)/(1-z)^10.
CROSSREFS
A167572 is the ED3 array.
A001147 equals the first left hand column.
A167576 equals the first right hand column.
A014481 equals the row sums.
Sequence in context: A367204 A213750 A213774 * A351951 A329029 A248983
KEYWORD
sign,tabl
AUTHOR
Johannes W. Meijer, Nov 10 2009
STATUS
approved