login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A triangle related to the GF(z) formulas of the rows of the ED3 array A167572.
3

%I #6 Jun 17 2016 00:09:43

%S 1,1,5,3,14,23,15,81,73,167,105,660,414,804,1473,945,6825,2850,7578,

%T 7629,16413,10395,85050,19425,99420,61389,111882,211479,135135,

%U 1237005,59535,1642725,429525,1461375,1518525,3192975,2027025,20540520,-2619540

%N A triangle related to the GF(z) formulas of the rows of the ED3 array A167572.

%C The GF(z) formulas given below correspond to the first ten rows of the ED3 array A167572. The polynomials in their numerators lead to the triangle given above.

%e Row 1: GF(z) = 1/(1-z).

%e Row 2: GF(z) = (z + 5)/(1-z)^2.

%e Row 3: GF(z) = (3*z^2 + 14*z + 23)/(1-z)^3.

%e Row 4: GF(z) = (15*z^3 + 81*z^2 + 73*z + 167)/(1-z)^4.

%e Row 5: GF(z) = (105*z^4 + 660*z^3 + 414*z^2 + 804*z + 1473)/(1-z)^5.

%e Row 6: GF(z) = (945*z^5 + 6825*z^4 + 2850*z^3 + 7578*z^2 + 7629*z + 16413)/(1-z)^6.

%e Row 7: GF(z) = (10395*z^6 + 85050*z^5 + 19425*z^4 + 99420*z^3 + 61389*z^2 + 111882*z + 211479)/(1-z)^7.

%e Row 8: GF(z) = (135135*z^7 + 1237005*z^6 + 59535*z^5 + 1642725*z^4 + 429525*z^3 + 1461375*z^2 + 1518525*z + 3192975)/(1-z)^8.

%e Row 9: GF(z) = (2027025*z^8 + 20540520*z^7 - 2619540*z^6 + 32228280*z^5 - 2479050*z^4 + 27797400*z^3 + 15813900*z^2 + 28153800*z + 54010305)/(1-z)^9.

%e Row 10: GF(z) = (34459425*z^9 + 383107725*z^8 - 115135020*z^7 + 722119860*z^6 - 283607730*z^5 + 703347750*z^4 + 89576100*z^3 + 470110500*z^2 + 495868185*z + 1030249845)/(1-z)^10.

%Y A167572 is the ED3 array.

%Y A001147 equals the first left hand column.

%Y A167576 equals the first right hand column.

%Y A014481 equals the row sums.

%K sign,tabl

%O 1,3

%A _Johannes W. Meijer_, Nov 10 2009