login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368184
Least k such that there are exactly n ways to choose a set consisting of a different binary index of each binary index of k.
7
7, 1, 4, 20, 276, 320, 1088, 65856, 66112, 66624, 263232
OFFSET
0,1
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
7: {{1},{2},{1,2}}
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
276: {{1,2},{1,3},{1,4}}
320: {{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
65856: {{1,2,3},{1,4},{1,5}}
66112: {{1,2,3},{2,4},{1,5}}
66624: {{1,2,3},{1,2,4},{1,5}}
MATHEMATICA
nn=10000;
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
q=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]], {n, nn}];
k=Max@@Select[Range[Max@@q], SubsetQ[q, Range[#]]&]
Table[Position[q, n][[1, 1]], {n, 0, k}]
CROSSREFS
For strict sequences: A367910, firsts of A367905, sorted A367911.
For multisets w/o distinctness: A367913, firsts of A367912, sorted A367915.
For sequences w/o distinctness: A368111, firsts of A368109, sorted A368112.
Positions of first appearances in A368183.
The sorted version is A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Sequence in context: A105199 A020791 A367910 * A086210 A085467 A186168
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 18 2023
STATUS
approved