login
A368184
Least k such that there are exactly n ways to choose a set consisting of a different binary index of each binary index of k.
7
7, 1, 4, 20, 276, 320, 1088, 65856, 66112, 66624, 263232
OFFSET
0,1
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
7: {{1},{2},{1,2}}
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
276: {{1,2},{1,3},{1,4}}
320: {{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
65856: {{1,2,3},{1,4},{1,5}}
66112: {{1,2,3},{2,4},{1,5}}
66624: {{1,2,3},{1,2,4},{1,5}}
MATHEMATICA
nn=10000;
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
q=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]], {n, nn}];
k=Max@@Select[Range[Max@@q], SubsetQ[q, Range[#]]&]
Table[Position[q, n][[1, 1]], {n, 0, k}]
CROSSREFS
For strict sequences: A367910, firsts of A367905, sorted A367911.
For multisets w/o distinctness: A367913, firsts of A367912, sorted A367915.
For sequences w/o distinctness: A368111, firsts of A368109, sorted A368112.
Positions of first appearances in A368183.
The sorted version is A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Sequence in context: A105199 A020791 A367910 * A086210 A085467 A186168
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 18 2023
STATUS
approved