login
A368190
Number of (undirected) cycles in the n-Dorogovtsev-Goltsev-Mendes graph.
1
0, 1, 11, 249, 74835, 5890739121, 34755832523270764251, 1207969003612007237832573159205646499369, 1459189113687796591938380205390010178829792070192521048490799792728844237848995
OFFSET
0,3
COMMENTS
Using the indexing convention that DGM(0) = P_2.
For n > 0, DGM(n) contains a unique longest cycle of length 3*2^(n-1).
LINKS
Eric Weisstein's World of Mathematics, Dorogovtsev-Goltsev-Mendes Graph.
Eric Weisstein's World of Mathematics, Graph Cycle.
FORMULA
a(n) = 3*a(n-1) + A007018(n-1)^3 for n > 0. - Andrew Howroyd, Dec 30 2023
PROG
(PARI) a(n) = {my(t=0, b=1); for(k=1, n, t = 3*t + b^3; b += b^2); t} \\ Andrew Howroyd, Dec 30 2023
CROSSREFS
Cf. A007018, A368456, A367967 (5-cycles), A367968 (6-cycles).
Sequence in context: A243683 A323255 A167868 * A238751 A098672 A056210
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Dec 16 2023
EXTENSIONS
Offset corrected and a(5) from Eric W. Weisstein, Dec 29 2023
Terms a(6) and beyond from Andrew Howroyd, Dec 30 2023
STATUS
approved