login
A377494
E.g.f. satisfies A(x) = 1/(1 + A(x)^2 * log(1 - x*A(x)^2)).
2
1, 1, 11, 248, 8632, 408794, 24550512, 1788220664, 153204336480, 15097630639464, 1682516996213376, 209233809698022240, 28725012833286981456, 4315256340778010888688, 704140465438516958644512, 124020015235118786512297728, 23450965881108082875087150336, 4738390708952218941582313234176
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (2*n+3*k)!/(2*n+2*k+1)! * |Stirling1(n,k)|.
PROG
(PARI) a(n) = sum(k=0, n, (2*n+3*k)!/(2*n+2*k+1)!*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 29 2024
STATUS
approved