login
A377492
E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x*A(x)))^2.
3
1, 2, 24, 562, 19974, 958468, 58085192, 4258862844, 366713780800, 36281317505040, 4056212559155664, 505750435243636944, 69586186789180895904, 10473322720889293098624, 1711744141030969885684320, 301912919501972279345773920, 57159241548809543158165770240
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377494.
a(n) = 2 * Sum_{k=0..n} (2*n+3*k+1)!/(2*n+2*k+2)! * |Stirling1(n,k)|.
PROG
(PARI) a(n) = 2*sum(k=0, n, (2*n+3*k+1)!/(2*n+2*k+2)!*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 29 2024
STATUS
approved