The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A012113 Expansion of e.g.f. tan(arcsin(arcsinh(x))) (odd powers only). 0
 1, 2, 24, 552, 28032, 1778688, 212383872, 25215328512, 5734229114880, 1029078328135680, 410202091438571520, 93624495716395745280, 65377722614151010222080, 15441784659337549573324800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA a(n) = ((2*n+1)!*sum(m=0..n, binomial(2*m,m)*2^(-2*m)*(2*m+1)!*(sum(j=0..n-m, (-1)^(n-m+j)*(sum(i=0..2*j,(2^i*Stirling1(2*m+1+i,2*m+1)* binomial(2*m+2*j,2*m+i))/(2*m+1+i)!)) *binomial(n-1/2,n-m-j))))). - Vladimir Kruchinin, Jun 17 2011 EXAMPLE tan(arcsin(arcsinh(x))) = x + (2/3!)*x^3 + (24/5!)*x^5 + (552/7!)*x^7 + (28032/9!)*x^9 + ... MATHEMATICA With[{nn=30}, Take[CoefficientList[Series[Tan[ArcSin[ArcSinh[x]]], {x, 0, nn}], x] Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, Oct 09 2012 *) PROG (Maxima) a(n):=((2*n+1)!*sum(binomial(2*m, m)*2^(-2*m)*(2*m+1)!*(sum((-1)^(n-m+j)*(sum((2^i*stirling1(2*m+1+i, 2*m+1)*binomial(2*m+2*j, 2*m+i))/(2*m+1+i)!, i, 0, 2*j))*binomial(n-1/2, n-m-j), j, 0, n-m)), m, 0, n));  /* Vladimir Kruchinin, Jun 17 2011 */ CROSSREFS Sequence in context: A046744 A000186 A210905 * A156525 A170904 A090732 Adjacent sequences:  A012110 A012111 A012112 * A012114 A012115 A012116 KEYWORD nonn AUTHOR Patrick Demichel (patrick.demichel(AT)hp.com) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 20:23 EST 2020. Contains 338755 sequences. (Running on oeis4.)