login
A377493
E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x*A(x)))^3.
1
1, 3, 51, 1695, 85524, 5826402, 501281256, 52178851302, 6378309961152, 895845418408992, 142179729906910680, 25166131508370202776, 4915451890368514588032, 1050225776987234559170976, 243664809398578134394019712, 61008419406811276254021582384
OFFSET
0,2
FORMULA
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A377497.
a(n) = 3 * Sum_{k=0..n} (3*n+4*k+2)!/(3*n+3*k+3)! * |Stirling1(n,k)|.
PROG
(PARI) a(n) = 3*sum(k=0, n, (3*n+4*k+2)!/(3*n+3*k+3)!*abs(stirling(n, k, 1)));
CROSSREFS
Cf. A377497.
Sequence in context: A246693 A187666 A377491 * A172434 A210676 A105639
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 29 2024
STATUS
approved