login
A187666
Binomial convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).
0
1, 3, 51, 1599, 74545, 4654255, 365549495, 34642467783, 3846064986001, 489429448820811, 70208261310969435, 11205444535728231855, 1969021774778391995761, 377672618542009829524551, 78507169034687468202172591
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * Lah(2k,k) * Stirling1(2n-2k,n-k).
MAPLE
L := n -> if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n! fi;
seq(sum(binomial(n, k)*L(k)*abs(combinat[stirling1](2*(n-k), n-k)), k=0..n), n=0..12);
MATHEMATICA
L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[Binomial[n, k]L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
PROG
(Maxima) L(n):= if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n!;
makelist(sum(binomial(n, k)*L(k)*abs(stirling1(2*n-2*k, n-k)), k, 0, n), n, 0, 12);
CROSSREFS
Sequence in context: A126685 A355797 A246693 * A377491 A377493 A172434
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 12 2011
STATUS
approved