%I #9 Oct 30 2024 08:04:39
%S 1,3,51,1695,85524,5826402,501281256,52178851302,6378309961152,
%T 895845418408992,142179729906910680,25166131508370202776,
%U 4915451890368514588032,1050225776987234559170976,243664809398578134394019712,61008419406811276254021582384
%N E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x*A(x)))^3.
%F E.g.f.: B(x)^3, where B(x) is the e.g.f. of A377497.
%F a(n) = 3 * Sum_{k=0..n} (3*n+4*k+2)!/(3*n+3*k+3)! * |Stirling1(n,k)|.
%o (PARI) a(n) = 3*sum(k=0, n, (3*n+4*k+2)!/(3*n+3*k+3)!*abs(stirling(n, k, 1)));
%Y Cf. A367159, A377492.
%Y Cf. A377497.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Oct 29 2024