login
A377497
E.g.f. satisfies A(x) = 1/(1 + A(x)^3 * log(1 - x*A(x)^3)).
2
1, 1, 15, 473, 23194, 1552084, 131908394, 13608546720, 1652258848656, 230829590868312, 36477894965606568, 6433858542834018240, 1252941162992516179776, 267027040073238416997024, 61819211233387513530840048, 15449035083850090935613775808, 4145148327496835979697002921216
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (3*n+4*k)!/(3*n+3*k+1)! * |Stirling1(n,k)|.
PROG
(PARI) a(n) = sum(k=0, n, (3*n+4*k)!/(3*n+3*k+1)!*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 30 2024
STATUS
approved