OFFSET
0,3
COMMENTS
See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.
FORMULA
G.f.: A(x) = 1 + Series_Reversion(1+7*x - (1+x)^6). Lagrange Inversion yields: G.f.: A(x) = Sum_{n>=0} C(6*n,n)/(5*n+1) * (6+x)^(5*n+1)/7^(6*n+1). - Paul D. Hanna, Jan 24 2008
a(n) ~ (-6 + 5*(7/6)^(6/5))^(1/2 - n) / (2^(3/5) * 3^(1/10) * 7^(2/5) * n^(3/2) * sqrt(5*Pi)). - Vaclav Kotesovec, Nov 28 2017
EXAMPLE
A(x) = 1 + x + 15*x^2 + 470*x^3 + 18390*x^4 + 805806*x^5 +...
A(x)^6 = 1 + 6*x + 105*x^2 + 3290*x^3 + 128730*x^4 + 5640642*x^5 +...
MATHEMATICA
CoefficientList[1 + InverseSeries[Series[1+7*x - (1+x)^6, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
PROG
(PARI) {a(n)=local(A=1+x+15*x^2+x*O(x^n)); for(i=0, n, A=A-7*A+6+x+A^6); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2006
STATUS
approved