login
A120602
G.f. satisfies: 31*A(x) = 30 + 125*x + A(x)^6, starting with [1,5,15].
2
1, 5, 15, 190, 2550, 38070, 609205, 10199640, 176483340, 3130904150, 56641633455, 1040985874470, 19381240377460, 364777461207360, 6929053224018750, 132665646902812800, 2557591625106894075, 49604907701733017850
OFFSET
0,2
COMMENTS
See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.
FORMULA
G.f.: A(x) = 1 + Series_Reversion((1+31*x - (1+x)^6)/125). Lagrange Inversion yields: G.f.: A(x) = Sum_{n>=0} C(6*n,n)/(5*n+1) * (30+125*x)^(5*n+1)/31^(6*n+1). - Paul D. Hanna, Jan 24 2008
a(n) ~ 5^(-1/2 + 3*n) * (-30 + 5*(31/6)^(6/5))^(1/2 - n) / (2^(3/5) * 3^(1/10) * 31^(2/5) * n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Nov 28 2017
EXAMPLE
A(x) = 1 + 5*x + 15*x^2 + 190*x^3 + 2550*x^4 + 38070*x^5 +...
A(x)^6 = 1 + 30*x + 465*x^2 + 5890*x^3 + 79050*x^4 + 1180170*x^5 +...
MATHEMATICA
CoefficientList[1 + InverseSeries[Series[(1+31*x - (1+x)^6)/125, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
PROG
(PARI) {a(n)=local(A=1+5*x+15*x^2+x*O(x^n)); for(i=0, n, A=A+(-31*A+30+125*x+A^6)/25); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2006
STATUS
approved