login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004130 Numerators in expansion of (1-x)^{-1/4}. 5
1, 1, 5, 15, 195, 663, 4641, 16575, 480675, 1762475, 13042315, 48612265, 729183975, 2748462675, 20809788825, 79077197535, 4823709049635, 18443593425075, 141400882925575, 543277076503525, 8366466978154285, 32270658344309385 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Numerators in expansion of sqrt(1/sqrt(1-4x)). - Paul Barry, Jul 12 2005

Denominators are in A088802. - Michael Somos, Aug 23 2007

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = prod(k=1, n, (4k-3)/k * 2^A007814(k)), proved by Mitch Harris, following a conjecture by Ralf Stephan.

a(n) = 2^(e_2((2n)!)-n)/n! Product[4k+1,{k,0,n-1}], where e_2((2n)!) is the highest power of 2 that divides (2n)! (sequence A005187). - Emanuele Munarini, Jan 25 2011

Numerators in (1-4t)^(-1/4) = 1 + t + (5/2)t^2 + (15/2)t^3 + (195/8)t^4 + (663/8)t^5 + (4641/16)t^6 + (16575/16)t^7 + ... = 1 + t + 5*t^2/2! + 45*t^3/3! + 585*t^4/4! + ... = e.g.f. for the quartic factorials A007696 (cf. A094638). - Tom Copeland, Dec 04 2013

MATHEMATICA

Table[Numerator[Binomial[-1/4, n] (-1)^n], {n, 0, 20}]

PROG

(PARI) {a(n) = if( n<0, 0, numerator( polcoeff( (1 - x +x*O(x^n))^(-1/4), n ) ) ) } /* Michael Somos, Aug 23 2007 */

CROSSREFS

Cf. A004134, A004981, A034255, A034385, A048882, A007696, A000265, A049606.

Sequence in context: A143048 A261843 A120602 * A088869 A134715 A053918

Adjacent sequences:  A004127 A004128 A004129 * A004131 A004132 A004133

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 13 20:38 EDT 2019. Contains 327981 sequences. (Running on oeis4.)