login
A377498
E.g.f. satisfies A(x) = 1/(1 - A(x)^3 * (exp(x*A(x)^3) - 1)).
2
1, 1, 15, 472, 23109, 1544236, 131066427, 13504084084, 1637471184585, 228472604080636, 36059751069011079, 6352095608437311844, 1235464848177560948685, 262972526121658780180300, 60804392657638382942192691, 15176441397584819546121452692, 4066926719970372629975938096017
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (3*n+4*k)!/(3*n+3*k+1)! * Stirling2(n,k).
PROG
(PARI) a(n) = sum(k=0, n, (3*n+4*k)!/(3*n+3*k+1)!*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 30 2024
STATUS
approved