login
A379045
a(1) = 1. For n > 1, a(n) is the least odd prime p which cannot be represented as the sum of a subset of the previous terms.
1
1, 3, 5, 7, 17, 19, 53, 67, 173, 211, 439, 997, 1993, 2801, 4969, 6791, 13697, 18661, 50849, 50971, 106669, 152729, 310127, 412333, 826097, 1134841, 2271053, 2991883, 4952809, 7223627, 18574201, 20534933, 40243939, 60778433, 100713031, 222270319, 241670423, 563829493
OFFSET
1,2
EXAMPLE
11 is not a term since 11 = 7 + 3 + 1.
13 is not a term since 13 = 7 + 5 + 1.
MAPLE
b:= proc(n, i) option remember; n=0 or i>0 and s(i)>=n
and (b(n, i-1) or a(i)<=n and b(n-a(i), i-1))
end:
s:= proc(n) option remember; `if`(n<1, 0, s(n-1)+a(n)) end:
a:= proc(n) option remember; local p; p:= a(n-1);
while b(p, n-1) do p:= nextprime(p) od; p
end: a(1), a(2):=1, 3:
seq(a(n), n=1..26); # Alois P. Heinz, Dec 15 2024
MATHEMATICA
b[n_, i_] := b[n, i] = n == 0 || i > 0 && s[i] >= n
&& (b[n, i-1] || a[i] <= n && b[n - a[i], i-1]);
s[n_] := s[n] = If[n < 1, 0, s[n-1] + a[n]];
a[n_] := a[n] = Module[{p = a[n-1]},
While[b[p, n-1], p = NextPrime[p]]; p];
{a[1], a[2]} = {1, 3};
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 02 2025, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A348438 A331800 A062547 * A125739 A219461 A122853
KEYWORD
nonn,changed
AUTHOR
EXTENSIONS
a(21)-a(37) from Alois P. Heinz, Dec 14 2024
a(38) from Jinyuan Wang, Dec 16 2024
STATUS
approved