login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponential Riordan array [exp(exp(x)-1-2x),x]
1

%I #5 Jul 19 2019 14:24:42

%S 1,-1,1,2,-2,1,-3,6,-3,1,7,-12,12,-4,1,-10,35,-30,20,-5,1,31,-60,105,

%T -60,30,-6,1,-21,217,-210,245,-105,42,-7,1,204,-168,868,-560,490,-168,

%U 56,-8,1,307,1836,-756,2604,-1260,882,-252,72,-9,1,2811,3070,9180,-2520,6510,-2520,1470,-360,90,-10,1

%N Exponential Riordan array [exp(exp(x)-1-2x),x]

%C First column is A126617. Row sums are A000296. A007318*A159830 is A124323.

%C The inverse is [exp(-exp(x)+1+2x),x] which has production matrix given by

%C 1, 1,

%C -1, 1, 1,

%C -1, -2, 1, 1,

%C -1, -3, -3, 1, 1,

%C -1, -4, -6, -4, 1, 1 ...

%F G.f.: 1/(1-xy+x-x^2/(1-xy-2x^2/(1-xy-x-3x^2/(1-xy-2x-4x^2/(1-... (continued fraction).

%e Triangle begins

%e 1,

%e -1, 1,

%e 2, -2, 1,

%e -3, 6, -3, 1,

%e 7, -12, 12, -4, 1,

%e -10, 35, -30, 20, -5, 1,

%e 31, -60, 105, -60, 30, -6, 1,

%e -21, 217, -210, 245, -105, 42, -7, 1,

%e 204, -168, 868, -560, 490, -168, 56, -8, 1

%e Production array is

%e -1, 1,

%e 1, -1, 1,

%e 1, 2, -1, 1,

%e 1, 3, 3, -1, 1,

%e 1, 4, 6, 4, -1, 1,

%e 1, 5, 10, 10, 5, -1, 1,

%e 1, 6, 15, 20, 15, 6, -1, 1,

%e 1, 7, 21, 35, 35, 21, 7, -1, 1,

%e 1, 8, 28, 56, 70, 56, 28, 8, -1, 1

%t (* The function RiordanArray is defined in A256893. *)

%t RiordanArray[Exp[Exp[#] - 1 - 2 #]&, #&, 11, True] // Flatten (* _Jean-François Alcover_, Jul 19 2019 *)

%K easy,sign,tabl

%O 0,4

%A _Paul Barry_, Apr 23 2009