OFFSET
1,2
COMMENTS
a(2k-1) is odd, a(2k) is even.
Exponent 2: There are infinitely many primes of the forms n^2+m^2 and n^2+m^2+1^2.
Exponent k>2: Are there infinitely many primes of the forms n^k+m^k and n^k+m^k+1^k?
REFERENCES
L. E. Dickson, History of the Theory of Numbers, Vol, I: Divisibility and Primality, AMS Chelsea Publ., 1999.
A. Weil, Number theory: an approach through history, Birkhäuser 1984.
David Wells, Prime Numbers: The Most Mysterious Figures in Math. John Wiley and Sons. 2005.
LINKS
Michel Marcus, Table of n, a(n) for n = 1..10000
EXAMPLE
MAPLE
A159829 := proc(n) for m from 1 do if isprime(n^3+m^3+1) then RETURN(m) ; fi; od: end: seq(A159829(n), n=1..120) ; # R. J. Mathar, Apr 28 2009
MATHEMATICA
snn[n_]:=Module[{n3=n^3, m=1}, While[!PrimeQ[n3+1+m^3], m++]; m]; Array[ snn, 100] (* Harvey P. Dale, Sep 04 2019 *)
PROG
(PARI) a(n) = my(m=1); while (!isprime(n^3+m^3+1^3), m++); m; \\ Michel Marcus, Nov 07 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 23 2009
EXTENSIONS
Corrected and extended by R. J. Mathar, Apr 28 2009
STATUS
approved