login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159828
a(n) is smallest number m > 0 such that m^2 + n^2 + 1 is prime.
3
1, 6, 1, 6, 9, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 27, 8, 9, 24, 1, 6, 21, 4, 69, 12, 3, 6, 21, 6, 3, 6, 1, 6, 9, 2, 9, 6, 1, 6, 15, 6, 9, 6, 1, 6, 27, 2, 3, 36, 9, 6, 3, 6, 15, 18, 1, 48, 3, 4, 9, 6, 7, 6, 15, 4, 21, 42, 5, 6, 3, 2, 69, 18, 5, 6, 3, 2, 9, 24, 1, 6, 3, 8, 9, 6, 11, 18, 15, 4, 3, 6, 7, 18
OFFSET
1,2
COMMENTS
a(2k-1) is odd, a(2k) is even.
There are infinitely many primes of the forms n^2 + m^2 and n^2 + m^2 + 1, but it is not known if the number of primes of the form n^2 + 1 is infinite; cf. comments in A002496, A002313, A079544.
LINKS
EXAMPLE
n = 1: 1^2 + 1^2 + 1 = 3 is prime, so a(1) = 1.
n = 2: 1^2 + 2^2 + 1 = 6, 2^2 + 2^2 + 1 = 9, 3^2 + 2^2 + 1 = 14, 4^2 + 2^2 + 1 = 21, 5^2 + 2^2 + 1 = 30 are composite, but 6^2 + 2^2 + 1 = 41 is prime, so a(2) = 6.
n = 27: 1^2 + 27^2 + 1 = 731 = 17*43, 2^2 + 27^2 + 1 = 734 = 2*367 are composite, but 3^2 + 27^2 + 1 = 739 is prime, so a(27) = 3.
MATHEMATICA
snm[n_]:=Module[{c=n^2+1, x=NextPrime[n^2+1]}, While[!IntegerQ[Sqrt[x-c]], x= NextPrime[x]]; Sqrt[x-c]]; Array[snm, 100] (* Harvey P. Dale, Sep 22 2018 *)
PROG
(Magma) S:=[]; for n in [1..100] do q:=n^2+1; m:=1; while not IsPrime(m^2+q) do m+:=1; end while; Append(~S, m); end for; S; // Klaus Brockhaus, May 21 2009
CROSSREFS
Cf. A069003 (smallest d such that n^2+d^2 is prime), A002496 (primes of form n^2+1), A002313 (primes of form x^2+y^2), A079544 (primes of form x^2+y^2+1, x>0, y>0).
Sequence in context: A222068 A272055 A157292 * A131114 A199230 A199101
KEYWORD
easy,nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 23 2009
EXTENSIONS
Edited and extended by Klaus Brockhaus, May 21 2009
STATUS
approved