The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293656 a(n) = binomial(n+1,2)*n!/n!!. 0
 1, 3, 12, 30, 120, 315, 1344, 3780, 17280, 51975, 253440, 810810, 4193280, 14189175, 77414400, 275675400, 1579253760, 5892561675, 35300966400, 137493105750, 858370867200, 3478575575475, 22562891366400, 94870242967500, 637646929920000, 2774954606799375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS It appears that the difference between a(n)/a(n-1) and a(n-1)/a(n-2) approaches some factor, 5 < x < 7, as n --> oo. It appears that 3|a(n) for n > 1. REFERENCES L. Euler and J. L. Lagrange, Elements of Algebra, J. Johnson and Co. 1810. See pages 332-335. LINKS FORMULA a(n) = ((n*(n+1))/2)/(Product_{i=0..floor((n-1)/2),n-2*i}/Product_{i=1..n}). From Chai Wah Wu, Feb 07 2018: (Start) a(n) = n*(n+1)!!/2. a(n)/a(n-1) = ((n+1)!!/n!!)*(n/(n-1)) = n/b*(n-1) if n is even and n*Pi/(2*b*(n-1)) if n is odd where b = int_{x=0..(Pi/2)} sin^(n+1)*x dx. Since b -> 0 as n -> oo, a(n)/a(n-1) is unbounded as n -> oo. On the other hand, a(n)/a(n-1) and a(n-1)/a(n-2) differ by a multiplicative factor of approximately Pi/2. (End) EXAMPLE For n = 6, a(6) = binomial(6+1,2)/(6!!/6!) = 315. CROSSREFS Cf. A000217, A000142, A006882. Sequence in context: A089143 A073952 A107231 * A131936 A009135 A131740 Adjacent sequences:  A293653 A293654 A293655 * A293657 A293658 A293659 KEYWORD nonn AUTHOR Justin Gaetano, Feb 06 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 07:26 EDT 2021. Contains 343163 sequences. (Running on oeis4.)