login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056665
Number of equivalence classes of n-valued Post functions of 1 variable under action of complementing group C(1,n).
31
1, 3, 11, 70, 629, 7826, 117655, 2097684, 43046889, 1000010044, 25937424611, 743008623292, 23298085122493, 793714780783770, 29192926025492783, 1152921504875290696, 48661191875666868497, 2185911559749720272442, 104127350297911241532859
OFFSET
1,2
COMMENTS
Diagonal of arrays defined in A054630 and A054631.
Given n colors, a(n) = number of necklaces with n beads and 1 up to n colors effectively assigned to them (super_labeled: which also generates n different monochrome necklaces). - Wouter Meeussen, Aug 09 2002
Number of endofunctions on a set with n objects up to cyclic permutation (rotation). E.g., for n = 3, the 11 endofunctions are 1,1,1; 2,2,2; 3,3,3; 1,1,2; 1,2,2; 1,1,3; 1,3,3; 2,2,3; 2,3,3; 1,2,3; and 1,3,2. - Franklin T. Adams-Watters, Jan 17 2007
Also number of pre-necklaces in Sigma(n,n) (see Ruskey and others). - Peter Luschny, Aug 12 2012
From Olivier Gérard, Aug 01 2016: (Start)
Decomposition of the endofunctions by class size.
.
n | 1 2 3 4 5 6 7
--+----------------------------------
1 | 1
2 | 2 1
3 | 3 0 8
4 | 4 6 0 60
5 | 5 0 0 0 624
6 | 6 15 70 0 0 7735
7 | 7 0 0 0 0 0 117648
.
The right diagonal gives the number of Lyndon Words or aperiodic necklaces, A075147. By multiplying each column by the corresponding size and summing, one gets A000312.
(End)
REFERENCES
D. E. Knuth. Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, 7.2.1.1. Addison-Wesley, 2005.
LINKS
M. A. Harrison and R. G. High, On the cycle index of a product of permutation groups, J. Combin. Theory, 4 (1968), 277-299.
F. Ruskey, C. Savage, and T. M. Y. Wang, Generating necklaces, Journal of Algorithms, 13(3), 414 - 430, 1992.
FORMULA
a(n) = Sum_{d|n} phi(d)*n^(n/d)/n.
a(n) ~ n^(n-1). - Vaclav Kotesovec, Sep 11 2014
a(n) = (1/n) * Sum_{k=1..n} n^gcd(k,n). - Joerg Arndt, Mar 19 2017
a(n) = [x^n] -Sum_{k>=1} phi(k)*log(1 - n*x^k)/k. - Ilya Gutkovskiy, Mar 21 2018
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = (1/n)*Sum_{k=1..n} n^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*A228640(n). (End)
EXAMPLE
The 11 necklaces for n=3 are (grouped by partition of 3): (RRR,GGG,BBB),(RRG,RGG, RRB,RBB, GGB,GBB), (RGB,RBG).
MAPLE
with(numtheory):
a:= n-> add(phi(d)*n^(n/d), d=divisors(n))/n:
seq(a(n), n=1..25); # Alois P. Heinz, Jun 18 2013
MATHEMATICA
Table[Fold[ #1+EulerPhi[ #2] n^(n/#2)&, 0, Divisors[n]]/n, {n, 7}]
PROG
(Sage)
# This algorithm counts all n-ary n-tuples (a_1, .., a_n) such that the string a_1...a_n is preprime. It is algorithm F in Knuth 7.2.1.1.
def A056665_list(n):
C = []
for m in (1..n):
a = [0]*(n+1); a[0]=-1;
j = 1; count = 0
while(true):
if m%j == 0 : count += 1;
j = n
while a[j] >= m-1 : j -= 1
if j == 0 : break
a[j] += 1
for k in (j+1..n): a[k] = a[k-j]
C.append(count)
return C
(Sage)
def A056665(n): return sum(euler_phi(d)*n^(n//d)//n for d in divisors(n))
[A056665(n) for n in (1..18)] # Peter Luschny, Aug 12 2012
(PARI) a(n) = sum(k=1, n, n^gcd(k, n)) / n; \\ Joerg Arndt, Mar 19 2017
CROSSREFS
Diagonal of arrays defined in A054630, A054631 and A075195.
Cf. A075147 Aperiodic necklaces, a subset of this sequence.
Cf. A000169 Classes under translation mod n
Cf. A168658 Classes under complement to n+1
Cf. A130293 Classes under translation and rotation
Cf. A081721 Classes under rotation and reversal
Cf. A275549 Classes under reversal
Cf. A275550 Classes under reversal and complement
Cf. A275551 Classes under translation and reversal
Cf. A275552 Classes under translation and complement
Cf. A275553 Classes under translation, complement and reversal
Cf. A275554 Classes under translation, rotation and complement
Cf. A275555 Classes under translation, rotation and reversal
Cf. A275556 Classes under translation, rotation, complement and reversal
Cf. A275557 Classes under rotation and complement
Cf. A275558 Classes under rotation, complement and reversal
Cf. A228640.
Sequence in context: A009025 A009103 A018192 * A345030 A378047 A127716
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 09 2000
STATUS
approved