login
A130296
Triangle read by rows: T[i,1]=i, T[i,j]=1 for 1 < j <= i = 1,2,3,...
22
1, 2, 1, 3, 1, 1, 4, 1, 1, 1, 5, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
This sequence was formerly named "reversals of A051340", but it is actually the truncation of A051340 to its lower left triangular part, re-indexed to start rows and columns with 1. - M. F. Hasler, Aug 15 2015
FORMULA
Truncation of A051340 to its lower left. By rows, "n" followed by (n-1) 1's. (1,2,3...) in the left border, all 1's in other columns.
a(n) = A004201(n) - A004201(n-1) for n>1. - Reinhard Zumkeller, Jul 16 2008
EXAMPLE
First few rows of the triangle are:
1;
2, 1;
3, 1, 1;
4, 1, 1, 1;
5, 1, 1, 1, 1;
...
PROG
(PARI) A130296(i, j)=if(j==1, i, j<=i) \\ The sequence should not be defined for j>i but it is used in several places as infinite square matrix with upper right part equal to zero. - M. F. Hasler, Aug 15 2015
(Python)
from math import isqrt
def A130296(n): return comb((m:=isqrt(k:=n<<1))+(k>m*(m+1)), 2)-comb((m2:=isqrt(k-2))+(k-2>m2*(m2+1)), 2)+1 # Chai Wah Wu, Nov 09 2024
CROSSREFS
Cf. A051340, A130297, A005408 (row sums).
Sequence in context: A300322 A144220 A156826 * A126705 A367849 A263646
KEYWORD
nonn,tabl,easy,changed
AUTHOR
Gary W. Adamson, May 20 2007
STATUS
approved