login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263646
Coefficients for an expansion of the Schwarzian derivative of a power series.
1
1, 1, 2, 1, 3, 1, 1, 4, 1, 1, 5, 1, 1, 1, 6, 1, 1, 1, 7, 1, 1, 1, 1, 8, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,3
COMMENTS
Coefficients for an expansion of the Schwarzian derivative of a power series f(x), with f'(0) = 1, expressed in terms of an expansion of the natural logarithm of the derivative of the function G(x) = log(D f(x)) = Sum_{n >= 1} -F(n) x^n/n.
FORMULA
Schwarzian{f(x)} = S{f(x)} = (D^3 f(x)) / (D f(x)) - (3/2) [(D^2 f(x)) / D f(x)]^2 = D [(D^2 f(x)) / D f(x)] - (1/2) [(D^2 f(x)) / D f(x)]^2 = D^2 log[D f(x)] - (1/2) [D log[D f(x)]]^2.
Then, with G(x) = log[D f(x)], S{f(x)} = D^2 G(x) - (1/2) [D G(x)]^2.
With f'(0) = 1, G(x) = log[D f(x)] = sum[n >= 1, -F(n) * x^n/n], and F(n) as Fn,
S{f(x)} = -[(F2 + F1^2/2) + (2 F3 + F1 F2) x + (3 F4 + F1 F3 + F2^2/2) x^2 + (4 F5 + F1 F4 + F2 F3) x^3 + (5 F6 + F1 F5 + F2 F4 + F3^2/2) x^4 + (6 F7 + F1 F6 + F2 F5 + F3 F4) x^5 + (7 F8 + F1 F7 + F2 F6 + F3 F5 + F4^2/2) x^6 + ...] .
This entry's a(m) are the numerators of the coefficients of the binary partitions in the brackets. For the singular partition of the integer n, the coefficient is (n-1); for the symmetric partition, 1/2; and for the rest, 1.
More symmetrically, x^2 S{f(x)}= - sum{n>=2, x^n [(n-1)F(n) + (1/2) sum(k=1 to n-1, F(n-k) F(k))]}.
With f(x)= c(0) + x + c(2) x^2 + ... , F(n) are given by the Faber polynomials of A263916: F(n) = Faber(n,2c(2),3c(3),..,(n+1)c(n+1)).
EXAMPLE
Partitions by powers of x^n:
n=0: -(F2 + F1^2/2)
n=1: -(2 F3 + F1 F2)
n=2: -(3 F4 + F1 F3 + F2^2/2) = -[3 F4 + (F1 F3 + F2 F2 + F3 F1) / 2]
n=3: -(4 F5 + F1 F4 + F2 F3) = -[4 F5 + (F1 F4 + F2 F3 + F3 F2 + F4 F1) / 2]
n=4: -(5 F6 + F1 F5 + F2 F4 + F3^2/2)
--------------------
Example series:
f(x)= (1/2) / (1-x)^2 = 1/2 + x + (3/2) x^2 + 2x^3 + (5/2)x^4 + ... .
log(f'(x)) = log(1 + 3x + 6x^2 + 10x^3 + ...) = 3x + 3 x^2/2 + 3 x^3/3 + ... .
Then F(n) = -3 for n>=1, and the Schwarzian derivative series is
S{f(x)} = - [(-3 + 3^2/2) + (-2*3 + 3^2) x + (-3*3 + 3^2 + 3^2/2) x^2 + ...] = -3/2 - 3x - (9/2)x^2 - 6x^3 - (15/2)x^4 - ... .
--------------------
The Schwarzian vanishes if and only if acting on a Moebius, or linear fractional, transformation. This corresponds to F(n) = (-1)^(n+1) 2 * d^n, where d is an arbitrary constant.
--------------------
Example polynomial:
f(x) = (x-x1)(x-x2)/-(x1+x2)
log(f'(x)) = log[1 - 2x/(x1+x2)] = Sum_{n>= 1} -(2/(x1+x2))^n x^n/n.
Then F(n) = (2/(x1+x2))^n, and the Schwarzian derivative series is
S{f(x)} = (Sum_{n>= 0} -6(n+1) 2^n (x/(x1+x2))^n) / (x1+x2)^2 = -6 / (x1+x2-2*x)^2 (cf. A001787 and A085750).
PROG
(Python) print(sum(([n]+[1]*((n+1)//2) for n in range(1, 18)), [])) # Andrey Zabolotskiy, Mar 07 2024
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Tom Copeland, Oct 31 2015
EXTENSIONS
More terms from Tom Copeland, Oct 01 2016
STATUS
approved